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ABSTRACT

Many studies have been carried out using different metaheuristic algorithms on optimisation problems
in various fields like engineering design, economics and routes planning. In the real world, resources
and time are scarce. Thus the goals of optimisation algorithms are to optimise these available resources.
Different metaheuristic algorithms are available. The firefly algorithm is one of the recent metaheuristic
algorithms that is used in many applications; it is also modified and hybridised to improve its performance.
In this paper, we compare the Standard Firefly Algorithm, the Elitist Firefly Algorithm, also called
the Modified Firefly Algorithm with the Chaotic Firefly Algorithm, which embeds chaos maps in the
Standard Firefly Algorithm. The Modified Firefly Algorithm differs from the Standard Firefly Algorithm
in such a way that the global optimum solution at a particular iteration will not move randomly but in a
direction that is chosen from randomly generated directions that can improve its performance. If none
of these directions improves its performance, then the algorithm will not be updated. On the other hand,
the Chaotic Firefly Algorithm tunes the parameters of the algorithms for the purpose of increasing the
global search mobility i.e. to improve the attractiveness of fireflies. In our study, we found that the Chaotic
Firefly Algorithms using three different chaotic maps do not perform as well as the Modified Firefly
Algorithms; however, at least one or two of the Chaotic Firefly Algorithms outperform the Standard
Firefly Algorithm under the given accuracy and efficiency tests.
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Generally, optimisation refers to maximisation
or minimization of an objective function by
finding suitable values for the variables
from a set of feasible values. Optimisation
solution methods can be categorised into two
categories: deterministic algorithms and non-
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deterministic algorithms. Heuristic or metaheuristic algorithms fall under non-deterministic
algorithms. The word ‘heuristic’ comes from a Greek word ‘to find’ or ‘to discover’ while
metaheuristic combines the words ‘meta’ and ‘heuristic’ where ‘meta’ means a higher level.
However, no difference is recorded between metaheuristic and heuristic; researchers seem to
use both names interchangeably. Heuristic algorithms are usually experience-based. Simply
put, they are a ‘common-sense’ approach to problem solving (Luke, 2013). They are used to
speed up the process of finding a good enough solution based on an educated guess, an intuitive
judgment or expertise (Suh et al., 2011). Metaheuristic algorithms are iterative procedures
that combine the concepts of exploration and exploitation within feasible regions (Osman &
Laporte, 1996). Learning strategies are used to organise information in order to generate near-
optimal solutions. Based on previous knowledge and most of the simulated real-life experiments
done in this area, heuristic algorithms try to get solutions which are effective to dismantle the
problems. They can be applied to many problems as they do not rely on rigorous mathematical
characteristics of the problems and may be generally used on global optimisation problems(Fink
& VoB, 1998; Fu et al., 2005; Tilahun & Ong, 2012a; Kopecek, 2014; Maknoon et al., 2014;
Cui, 2014).However,they do not guarantee the generation of an exact optimal solution within
acceptable timescales (Hopper & Turton, 2000). On the contrary, metaheuristics are likely to
generate near-optimal solutions within acceptable timescales. Nowadays, many studies are
found to group all stochastic algorithms within random variables and global exploration into
metaheuristic algorithms.

Two major search components of metaheuristics are exploration and exploitation.
Exploration means looking for diverse solutions by going around entire new regions in a
particular search space while exploitation means getting the current best solution by focusing
on those found regions. In a case where there is too little exploration and too much exploitation,
the algorithm may get trapped within local optima resulting in difficulty in finding the global
optimum. Therefore, we need to achieve a balance between these components to improve
the convergence of the algorithm (Creppinsek et al., 2000; Yang, 2011). Most metaheuristic
algorithms are nature-inspired and they mimic biological, physical or natural phenomena from
the real world. Some popular nature-inspired algorithms are the Particle Swarm Optimisation
(PSO) algorithm, the Prey-Predator Algorithm (PPA), the Cuckoo Search (CS) algorithm, the
Bat Algorithm (BA) and the Firefly Algorithm (FFA). They have different strengths and better
performances for a certain class of optimisation problems. It is quite challenging to select the
suitable or best algorithm for a specific problem, and this by itself is another optimisation
problem.

Nowadays, there are trends to introduce new algorithms, extend and modify the existing
algorithms, compare the performance of different algorithms, apply the algorithms in multiple
disciplines for optimisation purpose and combine any two algorithms in hybridisation (Fisher
et al., 2013). Even though the Firefly Algorithm is one of the recently introduced metaheuristic
algorithms (Yang, 2009), it has been used extensively for many applications and has been
modified and hybridised for different classes of optimisation problems (Apostolopoulos &
Vlachos, 2011; Basu & Mahanti, 2011; Gandomi et. al, 2013; Tilahun & Ong, 2013). In this
study, we compared the performances of the Standard (FFA) algorithm, the Modified Firefly
Algorithm (MFFA) and the Chaotic Firefly Algorithms (CFFAs) based on eight chosen test
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functions in terms of their accuracy and effectiveness. Three chaotic maps, namely, the Iterative
map, the Chebyshev map and the Sinusodial map for the Chaotic Firefly Algorithms, were
chosen based on their statistical results and success rate, which can improve the reliability
of the global optimality and enhance the quality of the results (Gandomi et a/., 2013).In the
chaotic map, we varied the parameters, [ (the attractiveness coefficient) and y (light absorption
coefficient). If y is too small and tends to zero, attractiveness becomes constant; and if y is
too large, attractiveness will decrease dramatically, as will be discussed later. Therefore we
needed to tune the y parameter used for all the Firefly Algorithms tested within these two
extreme vy values.

BASIC CONCEPTS

Optimisation Problem

Optimisation is a mathematical method to find a maximum or minimum value of an objective
function f(x) by choosing a variable from a feasible region, Q. x* is said to be a solution for a
minimisation problem if and only if x* €Q and f(x*) < f{x), VEQ . We can express the typical
minimisation problem in equation (1) and its equivalent maximisation problem in equation (2).

min f(x)

XER™

(1)
s.t. x€Q CR4

Hence f(x* ) < f(x) for all x€ Q

max —f (x)

XERN?

2
s.t. x€Q CR4 )

Hence f(x* ) > f(x) for all x€ Q

Optimisation algorithms are useful tools for different applications including experimental
design, parameter estimation, model development and statistical analysis; process synthesis,
analysis, design and retrofit; model predictive control and real-time optimisation. They are
also useful in the planning, scheduling and integration of process operations into the supply
chain for manufacturing and distribution (Biegler, 2010).

Standard and Modified Firefly Algorithm (FFA, MFFA)

The Modified Firefly Algorithm is an extension or improvement of the Firefly Algorithm (FFA),
which is a nature-inspired algorithm that imitates the behaviour of fireflies of flashing light
within their bodies to attract mating partners and potential predators (Yang, 2010).
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There are three assumptions made in adapting this behaviour of fireflies for use in an
algorithm:

i. All fireflies are unisex; therefore, a firefly may be attracted to any other firefly;

ii. The attractiveness of fireflies is proportional to their brightness, and for two fireflies, x; and
x;, if the brightness of x; > the brightness of x;, then x; will move towards x;. At the same
time, attractiveness decreases as distance increases.

iii. The brightness of a firefly is affected or determined by the landscape of the objective
function to be optimised

There are two important components affecting the movements of fireflies: the variation of
light intensity and the formulation of the attractiveness. As mentioned above, light intensity I
decreases as the distance r increases. We can express /(r) as given below:

I(r) =Iye " (3)

By combining this with the inverse square law, / (7) can be expressed as:

I(r) =1, e v’ (4)

As the attractiveness is proportional to the light intensity, we now define the attractiveness

B as:
B=pByer’ (5)

where [, is the attractiveness at r=0. Computationally, it is harder to calculate the
exponential function than 1/(1+r?), hence we approximate the equation of computing the
attractiveness [ as:

Bo

_— 6
1+yr? (6)

ﬁ:

Suppose we have a firefly 7 located at x; as the brighter firefly while another less bright
firefly j is at x;; the firefly j will move towards the firefly i. The location is then updated using
the process given below:

x;— x;+ fy e_}'"ffz( x; — :x:j-} + a(rand) (7)
where rand is a vector of random numbers 0<o<1 and 0.01<y<100 (Yang, 2009).

The distance between two fireflies, namely, firefly / and firefly j, r;, can be computed using
Euclidean distance as:

(8)

254 Pertanika J. Sci. & Technol. 23 (2): 251 - 269 (2015)



A Comparative Study on Standard, Modified and Chaotic Firefly Algorithms.

While the same in all the issues discussed above, the Standard and Modified Firefly
Algorithms mainly differ in the updating process of the brightest firefly; instead of letting this
brightest firefly, x;, which serves as the current global best solution to move randomly, we set
the movement direction for it. The purpose for doing so is that we know that if this brightest
firefly moves randomly, it may move to a region where its brightness may decrease i.e. the
performance of the global best solution for the algorithm may decrease. In order to do so, we
generate m unit vectors, u;, u,,...,u,, and choose one in which the brightness of the current
global best solution will increase if it moves in the particular direction, say U (Tilahun & Ong,
2012b). The movement direction of the brightest firefly can be expressed as below:

xge— xg+ al (9)

where o is the random step length and U is the unit vector chosen from the m directions. If
there is no direction from the m unit vectors for the current brightest solution to move in order
to increase its performance, the current brightest solution will remain at its existing position.
Furthermore, unlike the Standard Firefly Algorithm, in the Modified Firefly Algorithm, f,,
which is the attractiveness at =0, for a firefly this is not taken as 1 but can be expressed as:

Iy (10)

where /, is the intensity at 7=0 for firefly i while /;/is the intensity at 7=0 for firefly j and
1/ # 0. The modified firefly algorithm procedure is shown in Fig.1.

Chaotic Firefly Algorithm (CFFA)

Chaos is a type of unique deterministic nonlinear dynamic behaviour and it has been applied
widely in communication, automation, pattern recognition and other fields. A dynamic system
may be mathematically expressed either by a continuous set of equations or by a discrete
system, called a map, as follows:

Xi4+1 = f(xk) ,0 < X < 1, k = 0,1,2 .. (11)

running in chaotic state. The chaotic sequence
{ xk=0,1,2...}

can be used as a spread-spectrum sequence and as a random number sequence. These sequences
have already been proven for their easy and fast generation and storage (Heidari-Bateni &
McGillem, 1992; Nguyen et al., 2013).

The main idea of using chaotic maps or systems in a Firefly Algorithm is to replace the
random variables used in the firefly algorithm with chaotic variables so as to increase its mobility
for robust global optimisation. To fulfil this purpose, we tune the parameters  and vy for the
attractive movement in chaotic firefly. Tuning the parameters B and y will affect the results of
the convergence rate and the number of algorithm iterations (Arora & Singh, 2013; Yang, 2011).
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Imitialize the parameters:
light absorption cocfficient y,
random step length a

.

Generate initial population of fireflies x, (i=1,2, ...,
Input objective functionf (¥}, x= (X, , ..., )7

T
]

Compute the light intensity I at x; determined by f {x;)

Compute attractiveness f§,

Are there
brighter fireflies
than x; ?

Randomly generate m
directions

Move xi using equation

Any of these
directions imorove
the brightness of

x? No

Remain at the Remain at the
current position current position

Is stapping criteria
being achieved?

Fig.1: The Modified Firefly Algorithm Procedure
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Although firefly algorithms are efficient enough in optimisation problems, in this study we
noticed that the solutions kept on changing as they approached the optimum. Gandomi ef al.
(2013)suggested to tune the light absorption coefficient, y, and the attractiveness coefficient, f3,
using chaotic maps so as to increase the mobility of the solution in the algorithms. The chaotic
Firefly Algorithm procedure is shown in Fig.2.

GP

Initialize the initial:
light absorption cocfficient ,
random step length a
attractiveness i
Define a chaos mapping
1

¥
Generate initial population of fireflies x; (i=1,2, ..., n)
Input objective functionf(x), x=(x, , ..., xs)"

T

¥
Compute the light intensity /; at x; determined by f (x;)
‘Compute attractiveness ff,

Update light absorption
coefficient ¥ and
attractiveness § based on
the chaos mapping

Move x; using
cquation 7

Mave x randomly

Is stopping criteria
being achieved?

Fig.2: The Chaotic Firefly Algorithm Procedure
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Chaotic solutions are affected by three properties: sensitivity of parameters, sensitivity
of initial points and randomness (Sharkovsky et al., 1997). For the sensitivity of parameters,
slight changes in the parameters or initial values for the data will lead to vastly different future
behaviour. On sensitivity of initial points, we can see that if an initial point x, varies slightly,
two sequences found from repeated calculations on a chaotic map with a parameter finally
become quite different. For randomness, solutions starting from almost all x, in [0, 1] wander
in [0, 1] as the random number is taken from a uniform distribution.

The characteristic of non-repetition of chaos enables the algorithm to carry out overall
searches at a higher speed than stochastic ergodic searches, which depend on probabilities.
A random local search may cause the algorithm to be easily trapped in the local minima but
Chaotic maps are useful in helping the algorithm to escape this condition.

One-dimensional maps are the simplest systems with the capability of computing a chaotic
process (Ram, 2009).In this study, we choose three chaotic maps that have good performance in
terms of success rate and statistical analysis which was studied by Gandomi et al. (2013).The
maps chosen are the Iterative map, the Chebyshev map and the Sinusodial map. Gandomi et
al. (2013) suggested to normalise the chaotic maps between 0 and 2 to produce the simulation
results. We embedded these maps into the firefly algorithms for it to become Chaotic Firefly
Algorithms (CFFA).

The three chosen chaotic maps were one-dimensional and non-invertible maps. The first
map was an Iterative map. It is a mapping function that maps a region back onto itself and is
defined as below:

. am
Xp+1 = Sln(x_) (12)
p

where a€(0, 1) is the suggested range for the parameter. In this study, we used ¢=0.5 for all
the firefly algorithms being tested.

Secondly we had a Chebyshev map, which is a typical chaotic map called an identity
map, defined as:

X, = cos (kcos (x,)) (13)

The third chaotic map we tested was a Sinusodial map. It is defined as below:

2

Xp41 = axp” sin (wxy) (14)

Gandomi et al. (2013) suggested to use ¢=2.3 and x,=0.7, which gave us a simplification
of the equation as:

Xpypq = sin (mx,) (15)
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In Gandomi et al. (2013), the success rate for evaluating the performance of the algorithms
can be calculated using this equation:

Nsuccessf ul

S, =100 x
" Nan

(16)

where N, is the number of all trials, Ny, ey 1S the number of trials in which is found a
successful solution. Here, a run in which the results are close to the global optimum would be
considered a successful run. A successful run can be expressed as:

[|x9% — x*|| < (UB — LB) x 107* (17)

where x#° is the global best obtained by the proposed algorithms and UB is the upper bound
while LB is the lower bound of the variable tested.

TEST FUNCTIONS

Standard benchmarks or test functions are useful and important in evaluating the reliability,
efficiency and validation of optimisation algorithms. The test functions can be categorised
according to their types of continuity, modality and dimensionality. On the continuity of test
functions, we used both continuous and discontinuous functions. A function f{x) is said to be
continuous at a point ¢ if the limit of the function as x approaches c is the same as the functional
value of the function at x=c. If this property is not fulfilled at any point x=c, the function f{x)
is said to be discontinuous at c. For the modalities of test functions, we used both unimodal
and multimodal functions.

A unimodal function has only one optimum while a multimodal function may have many
local optima and global optima. Multimodal functions are useful in testing the ability of
optimisation algorithms to escape from a local minimum. In this study, we chose eight test
functions under different categories of continuity, modality and dimensionality. One of the
selected test functions was a four-dimensional objective function while the rest of the functions
chosen were two-dimensional.

Beale Function

The Beale Function is a continuous and unimodal function with sharp peaks at the corners of
the input domain. It is a two-dimensional function.The function is defined as:

Fi(x)=(1.5 - x1+ x; x5 ) H(2.25 - x1tx; X2 ) H(2.625-x+1x, x5°)?)

The variables x, and x, are both defined on the interval [-4.5, 4.5]. It is unimodal and
contains only one optimum i.e. a global minimum at (x,,x,)=(3, 0.5) giving the value of f; (x)=0
(Momin & Yang, 2013). Figure 3 shows the graph of f(x).
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Leon Function

The Leon Function is a continuous and unimodal function. It is a two-dimensional function.
The function is defined as:
o (0)=100(x,-x,* )+ (1-x; )?

The variables x; and x, are both defined on the interval [-1.2, 1.2]. The global minimum of
the Leon Function at (x,,x,)= (1, 1) gives the value of £; (x) =0 (Momin & Yang, 2013). Figure
4 shows the graph of f; (x) plotted for two-dimensional graph.

Matyas Function

The Matyas Function is a continuous and unimodal function. It is a two-dimensional function.
The function is defined as:

3 (0)=0.26(x*+x,2)+0.48x, x,

The variables x; and x, are both defined on the interval [-10, 10]. The global minimum
of the Matyas function at (x,,x,)= (0, 0) gives the value of f; (x) = 0 (Momin & Yang, 2013).
Figure 5 shows the graph of f; (x) plotted for a two-dimensional graph.

Goldstein Price Function

Goldstein Price Function is a continuous and multimodal function. It is a two-dimensional
function.The function is defined as:

S QO)=[1+(x +x, +1)% (19-14x,+3x,2-14x,+6x, x,+3x,% )] %
[30-+(2x1-3x; )? (18-32x,+12x,*+48x,-36x; x,127x,%)]

The variables x; and x, are both defined on the interval [-2, 2]. The global minimum of the
Goldstein Price function at (x,,x,)= (0, -1) gives the value of ; (x) = 3 (Schonlau, 1997). Not
far from the global minimum, there are another three local minima. Therefore, it is said to be
a difficult problem for minimisation methods due to its having more than one local minimum.
Figure 6 shows the graph of f;(x).

Hosaki Function

The Hosaki Function is a continuous and multimodal (bimodal) function. It is a two-
dimensional function.The function is defined as below:

folx) = (1—8x; +7x,% — %«’513 + ixiq:l(xzze_xz)

The variable x, is defined on the interval [0, 5] while x, is defined on the interval [0, 6].
The global minimum of the Hosaki function at (x,,x,)= (4, 2) and the local minimum of the
Hosaki function at (x,,x,)= (1, 2) give the value of f; (x) =-2.3458 (Duan et al., 1992). Figure
(7) shows the graph of f; (x).
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Price I Function

The Price 1 Function is a continuous and multimodal function. It is a two-dimensional function.
The function is defined as:

Jo @)=(Ix; |-3)°+ (¥ |-5)

The variables x, and x, are both defined on the interval [-500, 500]. There are four global
minima of the Price 1 Function at (x;,x,)= {(-5, -5), (-5, 5), (5, -5), (5, 5)} which give the value
of f5 (x) = 0 (Price, 1976). Figure 8 shows the graph of f; (x).

Bird Function

The Bird Function is a continuous and multimodal function. It is a two-dimensional function.
The function is defined as:

frlx) = sin{xl)efl—cus EY) L CDS{xE}EU—ain (0% 4 (o; — xz):

The variables x, and x, are both defined on the interval [-27, 2xt]. The global minimum of
the Bird Function at (x;,x,)= (4.70104, 3.15294) and (-1.58214, -3.13024) gives the value of
f7 (x) =-106.764537 (Momin & Yang, 2013). Figure 9 shows the graph of £; (x) plotted for a
two-dimensional graph.

Cosine Mixture Function

The Cosine Mixture Function is a discontinuous and multimodal function. This function can
be either in two or four dimensions.The function is defined as:

n

folx) = —0.1] z:=1 cos (Smx) — EL.:l.ri:]

The variable x, is defined on the interval [-1, 1]. In this study, we fixed the number of
dimensions to four. The minimum of the Cosine Mixture function is found at x;= 0 to give
the values of f; (x) = -0.2 and f; (x) = - 0.4 for the two-dimensional and four-dimensional cases
respectively. (Momin & Yang, 2013). Figure 10 shows the graph of f; (x) plotted for the two-
dimensional graph.
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SIMULATION RESULTS

We carried out tests for the eight functions for the algorithms under two termination criteria,
which are the maximum number of iterations and pre-given tolerance. The maximum number
of iterations was set as 200 iterations and was tested at 100 trials, with the same random initial
solution passing to the entire algorithm in each trial. We recorded the mean functional values
and their standard deviations as well to examine the accuracy of the tested functions on different
algorithms. At the same time, we compared the mean CPU time needed per trial on the FFA,
MFFA and CFFA. Using the second termination criterion, we set a tolerance which was close to
the global minimum value. We got the mean number of iterations needed for convergence when
the termination criterion was met and the mean CPU time needed per trial for the algorithms
respectively. For both tests, we set the number of solutions at 50, 100 and 150 to see whether
the number of solutions affected the simulation results. The simulation results for the first test
are shown in Table 1 while the simulation results for the second test are shown in Table 2.

Under the maximum number of iterations as termination criteria, the number of iterations
for the inner loop was set at 200 and these were tested 100 times repeatedly in the while loop
until the best solution (optimal value) was obtained. The results in Table 1 show the sample
mean, sample standard deviation and sample mean CPU time for eight test problems (7) under
five algorithms (j) in three sets of numbers of fireflies (k). Under these criteria, the accuracy
of the algorithms can be compared.

In the first test, for the mean functional values, MFFA, outperformed the other algorithms
for all eight test functions i.e. the functional values were the closest to the global minimum
values. For instance, when n=50, MFFA outperformed the other algorithms (shown in bold
and italics) since its sample mean optimal value was the nearest to the established optimum
in all the eight test functions carried out where p,,,=0.0032, 11,,=0.0000, p 3,=0.0001, p
21=3.0262, s55,=-2.345515621=0.0014, p ,,,=-106.7020 and p g,,=-0.3346. We noticed that
the MFFA achieved the highest accuracy. Besides that, we also observed that at least one of
the CFFA (when we see the three chaotic mappings as a group) performed better than the
FFA. For instance, when n =100, 7 out of 8 test problems in the CFFAs performed better
than FFA (shown in bold and italics) where 11;5,=0.0131 and p 15,=0.0129 compared to p
122=0.0152;133,=0.0007and p34,=0.0006 compared to p3,,=0.0008; p 43,=3.1805 compared
to 141,=3.3074; us3,=-2.3447 and p 54,=-2.3443 compared to p 5,=-2.3439; 163,=0.2840 and
Hes2=0.2927compared to L 4,=0.3164; p 73,=-106.5059, p-4,=-106.5120 and p,5,=-106.5546
compared to p;,=-106.4639; u 53,=-0.2689 compared to p 5,,=-0.2622.

Besides comparing the sample mean optimal value, we can also compared the sample
standard deviation for the sample mean value obtained from the 8 test functions. Overall, the
sample standard deviation for the MFFA was the smallest among all the five algorithms tested
regardless of the number of fireflies set. It indicated that the results from the MFFA were more
constant and stable. On the other hand, the performances of the sample standard deviations
and CPU times of the FFA and the CFFA depended on the performance of their sample means
respectively. For instance (as underlined), o5, = 0.0040, op 5, = 0.0000, opsy; = 0.0001,
ol 4= 0.0227, opsy= 0.0002, opg, = 0.0014, op 4, = 0.0898 and o, = 0.0163 for n=50;
Oll122)=0.0025, Gt 55,= 0.0000, G135, = 0.0001, op 42 = 0.0233, 655, = 0.0003, oL 62, =0.0015,
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Ol72,)=0.0813 and 6_(ig20) = 0.0169 for n=100; and 61153 =0.0021, 6115,3=0.0000, 6113,;=0.0001,
O3 =0.0179, 6523 =0.0002, GL163)=0.0013, 611723 =0.0648 and opig; =0.0185 for n=150. A low
standard deviation obtained in MFFA indicated that the optimal sample mean of the optimal
solutions obtained for each trial was distributed very close to the optimal sample mean of the
optimal solutions i.e. the variation between the means was rather small.

Under the tolerance value accepted according to the established optimum of the eight test
problems as termination criteria, the number of iterations for the inner loop was set at 10000
number of times and these iterations were tested 100 times repeatedly until a termination
criterion, which achieved a very close solution to the actual optimal solution based on the
tolerance given, was obtained.The results in Table 2 show the number of iterations needed
for the convergence in each trial with its sample standard deviation and the mean CPU time
needed for each trial and its sample standard deviation. Under these criteria, the effectiveness
of the algorithms can be compared.

In the second test, for the mean number of iterations, the MFFA also outperformed the
other algorithms for all the eight test functions i.e. it converged faster than others and had
the least number of iterations. For instance, under fi(shown in bold and italics), when n=50,
1tre;,=38.3900 compared to Itr¢;,=51.9800, Itrs,=60.7300, 1175, =55.2500 and /trs;,=54.2300. As
was the situation for the first test, there was at least one CFFA (when we saw the three chaotic
mappings as a group) converged faster than the FFA. For instance, when n=150, 7 out of 8
test problems in the CFFAs performed better than the FFA (shown in bold and italics) where
1tr,3=23.6200 and /tr,5;=23.3800 compared to Itr|,;=26.1400;1tr,;;=8.7200 and Itr,,;;=7.4800
compared to /t7,,;=9.1700; [tr;;;=18.1800 and /tr;5,=21.8400 compared to [tr3,;=22.7100;
1tr37=18.6000, [tr,;=24.5200 and [tr45;=34.2300 compared to Itr,,;=34.4900;/tr5,,=17.2800
compared to Itrs;;=17.6300; Itr,;;=12.3800compared to Itr,;=12.8100; Itr4;;=46.2300,
1tr44;=48.9900 and [r45;=38.4100 compared to /trg,;=52.4400.

Furthermore, the MFFA needed the least CPU time to converge, followed by both the
CFFA and the FFA simultaneously. The sample standard deviations of the number of iterations
and the CPU times for convergence depended on the performance of the number of iterations
spontaneously. We noticed that the sample standard deviation for MFFA was the least and its
CPU time was the least as well since the MFFA had the smallest number of iterations needed
to reach the convergence criteria. For instance, under f; (as underlined), Itr,»,=12.0300 at
oltr,,,=10.9622 with CPU;,,=0.2316 (MFFA) when n = 100 has the least number of iterations,
standard deviation and CPU time if compared to the results obtained in the FFA and the CFFAs.

Most of the time, when the number of fireflies increased, the optimal values got closer to
the established optimum. For instance,1,;,=0.0007 for n =50 had improved to p,,,=0.0005 for
n = 100 and then further improved top,;;=0.0004 for n = 150. We could see the sample mean
was approaching the established optimum when the number of fireflies increased from 50 to
100 and then to 150. This indicated that the number of fireflies had a positive relationship
with the optimal sample mean value. Therefore, if we wished to get the best optimal value,
what we needed to do was to increase the sample size. We also noticed that the mean number
of iterations was actually affected by the tolerance value set for the functions; the smaller
the difference between the global minimum value and the tolerance, the fewer the number
of iterations were needed for convergence. For instance, f; was set at the tolerance of 0.1, f]
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was set at the tolerance of 0.01, f; was set at the tolerance of 0.001 where the tolerance in f;
had the smallest different with a global minimum (f;,,;,=0). When n=100, we observed that
(underlined) the number of iterations decreased from /#r4,,=35.5000 to /tr,,=34.3700 and then
Itr5,,=23.1800 under the FFA.

Theoretically, exploration is done using a big-step length which can take the solution away
from its current neighbourhood. Both of the three versions of Firefly Algorithms have the same
exploration property. However, due to the chaos representation of the algorithm parameters in
the CFFA, Gandomy et. al. (2013)claimed that it was faster than the Standard Firefly Algorithm.
In terms of exploitation, the MFFA has the advanatge of tracking its best and not leaving it
unless a better solution is found. Unlike the MFFA, the performance of the other two versions
usually fluctuates with the iterations; hence, the MFFA outperformed the other two.

CONCLUSION

This paper discusses the recent versions of Firefly Algorithms, the Chaotic Firefly Algorithm
and the Modified Firefly Algorithm, along with the Standard Firefly Algorithm. The Firefly
Algorithm is a metaheuristic optimisation algorithm in which randomly generated feasible
solutions are assigned as fireflies with a light intensity based on the objective function. A firefly
tends to follow brighter fireflies and where no brighter firefly exists, if it is the brightest one, it
will move randomly. This random movement is modified in the Modified Firefly Algorithm so
that the performance of the algorithm will not fluctuate through iterations and it keeps the best
solution throughout the iteration, only replacing it if a better solution is found. On the other
hand, by incorporating chaos in determining the values of the algorithm parameter rather than
taking it as a constant number, is how the Chaos Firefly operates. Incorporating chaos helps in
the fast convergence of the algorithm. In this study, these three versions of Firefly Algorithms
were studied and compared based on eight selected test problems of different types. The
simulation results for the Standard Firefly Algorithm, the Modified Firefly Algorithm and the
Chaos Firefly Algorithm, using the three types of chaos models, suggested that the Modified
Firefly Algorithm outperformed the other versions in average performance and also had a
smaller standard deviation. Hence, based on the selected test problems, the MFFA was seen
to be the most accurate and effective algorithm compared to the Chaos and Standard Firefly
Algorithm while at least one mapping of the Chaotic Firefly Algorithm performed better than
the Standard Firefly Algorithm.
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